Dynamical effects of the electron–electron interaction in binary alloys with off-diagonal disorder are described in a self-consistent theory obtained by unifying a local ladder approximation for the random Hubbard model and a modified CPA. Numerical results are presented for partially averaged densities of states, self-energies which fulfil the Luttinger theorem, and effective two-particle vertices. The totally averaged density of states exhibits tails with strongly damped correlation humps.